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1. It 1s known that a quiescent fluid cylinder enclosed on the outside
by another fluid 1s unstable in the presence of the surface tension forces
[1]. In the paper [2] the results are presented of the investigation of the
stability in the case when the cylinder moves along the axis with a velocity
U = const with respect to the exterior medium. The examination is limited
to the case of an axially symmetric disturbance.

Let us consider the stability of a cylindrical tangential discontinuity
with surface tension with respect to an arbitrary disturbance of the form
= f(r) exp [i (kz 4 mp —w?)] 1.1y

Inside the cylinder, for 7 < 6 , the quantities will be dencted by the
subscript i (vy = U = const, p;, py), outside of the cylinder the subscript
e(v,, = y P, ,p.ﬁ will be used. roceeding from the equations for ideal
hydrodynam{cs

divv =0, pdv [dt = — Up (1.2)

for the disturbance (1.1) we obtain the dispersion equation
B — )t + p B0t =a [# + T (i=m' s = T kK, (k)
(1.3)

Here a 18 the coefficient of surface tension, I,(xa), »,(xa) are
Bessel functions with imaginary arguments. The coefficients g, and 8,
are positive. The roots of -the dispersion equation are

=gt {p@‘ A [" (oo 4 2522 - p;Bf:’j’ ]}/ (“‘ = ;% ) @4

In the particular case with [ = O the dispersion equation (1.3) describes
the stability of equilibrium of & fluid cylinder [1]. The form of Equation
{(1.43) with 7 = 0 is simplified. Because of the presence of surface tension,
this column of fluid is unstable with respect to the disturbance of the type
(m = 0) with wave length greater than the radius (xa < 1). The cylindrical
tangential discontinuity without surface tension (a = 0) is unstable with
respect to the disturbance for arbitrary = and any wave length. Surface
tension shows a stabilizing influence on short wave disturbances (xa > 1)
and a destabilizing influence on long wave disturbances of the type (m = 0),

1165



1166 E.G. Lariontsev

2. Let us consider hydromegnetic stability of an ideally conductlve
rlasma jet-submerged in a nonconductive fluid. Shafranov [3] investigated
the stability of a plasma string retained by an exterior magnetic field. We
will assume additionally that outside the string there exists a nonconduc-
ting fluid and the string moves with respect to the exterior fluld at a velo-
city U = const along its axis. For the undisturbed state we set

Hy =0, H,; = const, p; = const, v =U for r<ae
H, = Hea/r, H,_ = const, P, = const, Ve =0 for r>a

ze
Omitting the calculatlons analogous to those performed in [3] on the basis

of the system of ejuations of ideal magneto-hydrodynamics

divv = 0, p-‘;—‘;Z—Vp+%[jXH]. div H = 0, %:m[vxul (r< a)
div v = 0, p%=—VP (r>a) (2.1)
for the disturbance of the form {(1.1) we obtain the dispersion equation
(kU —w)* + An2 =B + z;”zlc2 for a =1 (2.2)
where ,
el (B Ko (R) - Hkl,' (8) ( (m + kh,)? }
T T WE, B B T m g !
_ kK, (k) . H,?2 H,,
PERTER W 0 W T Imp = H,

The condition of stability has the form
B+ kzv,f’ —BRRU2 >0, p=A4/(1+4 A4) (2.3)

If the plasma cylinder rests in a nonconductive gas (¥ = O), from (2.3)
follows the conditlon of stability obtained by Shafranov. It 1s evident
from (2.3) that the plasma Jet moving with veloclity ¢ 1in an exterior gas,
is less stable than the qulescent plasma string (the term B¥°{® worsens
stability). The condition of stabllity (2.3) can be interpreted in the fol-
lowing sense: the magnetlc fleld ., stabllizes the tangential discontinu-
1ty of the veloeity, for y,° E stabilizing of the tangential disconti-
nuity by the magnetic fleld is possible.

We will show that the ceriterion of stability of the Jet essentlally depends
on the distributlon of the current density in the cross-section of the Jet.
With this in mind we consider the following get model (a jet with a homoge-
neous axlal current and a longitudinal field

a
H@i = H“é ! H,; = const, vy = U; H‘Fe = H°T ! o= Hy, v =10

.

The pressure ; falls off according to a parabolic law to the value p,
at r =a ., On tﬁe boundary cof the Jet the pressure and the magnetic fleld
are continuous.

Among the disturbances of the form (1.1) there exlist those, that do not
distort the magnetic field. In fact, from the condition of frozen flow it

follows that
1 L 1}
(kU — o) HV = (_’r" H; I:Hzi) v

with {m/r) Hy + kH,; =0  only the velocity and pressure disturbances
are different from zerc, Since the magnetic field is not disturbed, it does
not influence the development of the velocity and pressure disturbances.
For such disturbances we obtain the dispersion eguation of ordinary hydro-
dynamics (Equation (1.3) for ¢ = O ). The plasma Jet will be unstable in
the presence of any veloclity ¢ . Thus, the criterias for stabllity of the
plasma Jet strongly depend on the distribution of the current density through
the cross-secticn of the Jet. The surface currents and the discontlinuities
of the magnetic field on the boundary of the Jjet stabllize the tangential
discontinuity of the veloclty. In the case of a continuous distribution of
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the current density through the cross-section of the Jjet the plasma jet may
show itself to be unstable at any magnitude of the velocity Jjump.

3. We limit ourselves to the investigation of the following model of a
cylindrical tangential discontinuity in an ideally conducting fluid:

r r
Hwi = HOT: Hzi = const, Vyi = U, Hw = Hb—a'v Hze = Hzi‘. Vie = Y

(the longitudinal field H, and the current density j, are homogeneous) .
For a disturbance of the form (1.1) from the conditions of frozen flow we
obtain

m m
(kU — @) H‘-(” = (._r— Hcpi + ,‘Hzi) vi(l), — o)Hcm = (T Hw + an) v (1

1t m/rH,+ kH, =0, tnen the magnetic field is not disturbed and the
criterion of stability of the tangential discontinulty does not depend on the
magnetic field (again we obtain the dispersion equation (1.3) for o = O).

It appears that the magnetic fleld component TEQ) transverse to the velo-
clty, significantﬁg weakens the stabilizing effect of the magnetic field.
In fact, 1f H_, =0, then for k=0 the magnetic field alyays deforms and
effectively stabilizes the tangential discontinulty of the velocity. With
IYO = 0 we obtain the dispersion equation

Bin: + BcHz:
pB; (kU — w)? + p B,0* = & T am (3.1)

The condition of stability of the tangential discontinuity has the form

2 a piB{PeBe
B(Hzi + B.Hze >4ﬂ p{B{ + peBe Us (3.2)

The results of this Section are In agreement with those obtalned by Syro-
gatskii with respect to the stability of plane tangential discontinuitles
4].

In conclusion the author is grateful to A.I. Morozov for his discussion
and suggestlons regarding this work.
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